Efficient Estimation for Diagnosis Using Factored Dynamic Bayesian Networks ?

نویسندگان

  • Indranil Roychoudhury
  • Gautam Biswas
  • Xenofon Koutsoukos
چکیده

Robust and efficient estimation of hidden state variables of a system in the presence of measurement noise and modeling errors is crucial for online model based fault diagnosis of continuous systems. Dynamic Bayesian Networks (DBNs) provide generalized and systematic methods for reasoning under uncertainty. This paper presents an approach to improve estimation efficiency by partitioning the DBN into smaller factors and invoking estimation algorithms on each factor independently. The factors are generated by replacing some state variables with algebraic functions of some measurement variables, thus reducing the across-time links between these state variables. Hence, given the measurements, these state variables become conditionally independent of the state variables in other factors, and the states of each factor can be estimated separately. This paper derives an algorithm for generating these factors and presents experimental results to demonstrate the effectiveness of our factoring approach for accurate estimation of system behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion Segmentation Using Inference in Dynamic Bayesian Networks

Existing formulations for optical flow estimation and image segmentation have used Bayesian Networks and Markov Random Field (MRF) priors to impose smoothness of segmentation. These approaches typically focus on estimation in a single time slice based on two consecutive images. We develop a motion segmentation framework for a continuous stream of images using inference in a corresponding Dynami...

متن کامل

Efficient Structure Learning in Factored-State MDPs

We consider the problem of reinforcement learning in factored-state MDPs in the setting in which learning is conducted in one long trial with no resets allowed. We show how to extend existing efficient algorithms that learn the conditional probability tables of dynamic Bayesian networks (DBNs) given their structure to the case in which DBN structure is not known in advance. Our method learns th...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Estimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks

Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009